A327353 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of subsets of {1..n} with non-spanning edge-connectivity k.
1, 1, 1, 2, 3, 8, 7, 3, 1, 53, 27, 45, 36, 6, 747, 511, 1497, 2085, 1540, 693, 316, 135, 45, 10, 1
Offset: 0
Examples
Triangle begins: 1 1 1 2 3 8 7 3 1 53 27 45 36 6 747 511 1497 2085 1540 693 316 135 45 10 1 Row n = 3 counts the following antichains: {} {{1}} {{1,2},{1,3}} {{1,2},{1,3},{2,3}} {{1},{2}} {{2}} {{1,2},{2,3}} {{1},{3}} {{3}} {{1,3},{2,3}} {{2},{3}} {{1,2}} {{1},{2,3}} {{1,3}} {{2},{1,3}} {{2,3}} {{3},{1,2}} {{1,2,3}} {{1},{2},{3}}
Crossrefs
Programs
-
Mathematica
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]]; Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],eConn[#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}
Comments