cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327371 Triangle read by rows where T(n,k) is the number of unlabeled simple graphs with n vertices and exactly k endpoints (vertices of degree 1).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 0, 2, 0, 5, 1, 3, 1, 1, 16, 6, 7, 2, 3, 0, 78, 35, 25, 8, 7, 2, 1, 588, 260, 126, 40, 20, 6, 4, 0, 8047, 2934, 968, 263, 92, 25, 13, 3, 1, 205914, 53768, 11752, 2434, 596, 140, 47, 12, 5, 0, 10014882, 1707627, 240615, 34756, 5864, 1084, 256, 58, 21, 4, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Examples

			Triangle begins:
     1;
     1,    0;
     1,    0,   1;
     2,    0,   2,   0;
     5,    1,   3,   1,  1;
    16,    6,   7,   2,  3,  0;
    78,   35,  25,   8,  7,  2,  1;
   588,  260, 126,  40, 20,  6,  4, 0;
  8047, 2934, 968, 263, 92, 25, 13, 3, 1;
  ...
		

Crossrefs

Row sums are A000088.
Row sums without the first column are A141580.
Columns k = 0..2 are A004110, A325115, A325125.
Column k = n is A059841.
Column k = n - 1 is A028242.
The labeled version is A327369.
The covering case is A327372.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    G(n)={sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * prod(i=1, #p, (1 - x^p[i])/(1 - (x*y)^p[i]) + O(x*x^(n-k)))); x^k*s/k!)*(1-x^2*y)/(1-x^2*y^2)}
    T(n)={my(v=Vec(G(n))); vector(#v, n, Vecrev(v[n], n))}
    my(A=T(10)); for(n=1, #A, print(A[n])) \\ Andrew Howroyd, Jan 22 2021

Formula

Column-wise partial sums of A327372.

Extensions

Terms a(21) and beyond from Andrew Howroyd, Sep 05 2019