A327371 Triangle read by rows where T(n,k) is the number of unlabeled simple graphs with n vertices and exactly k endpoints (vertices of degree 1).
1, 1, 0, 1, 0, 1, 2, 0, 2, 0, 5, 1, 3, 1, 1, 16, 6, 7, 2, 3, 0, 78, 35, 25, 8, 7, 2, 1, 588, 260, 126, 40, 20, 6, 4, 0, 8047, 2934, 968, 263, 92, 25, 13, 3, 1, 205914, 53768, 11752, 2434, 596, 140, 47, 12, 5, 0, 10014882, 1707627, 240615, 34756, 5864, 1084, 256, 58, 21, 4, 1
Offset: 0
Examples
Triangle begins: 1; 1, 0; 1, 0, 1; 2, 0, 2, 0; 5, 1, 3, 1, 1; 16, 6, 7, 2, 3, 0; 78, 35, 25, 8, 7, 2, 1; 588, 260, 126, 40, 20, 6, 4, 0; 8047, 2934, 968, 263, 92, 25, 13, 3, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- Gus Wiseman, The graphs counted in row 5 (isolated vertices not shown).
Crossrefs
Programs
-
PARI
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)} G(n)={sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * prod(i=1, #p, (1 - x^p[i])/(1 - (x*y)^p[i]) + O(x*x^(n-k)))); x^k*s/k!)*(1-x^2*y)/(1-x^2*y^2)} T(n)={my(v=Vec(G(n))); vector(#v, n, Vecrev(v[n], n))} my(A=T(10)); for(n=1, #A, print(A[n])) \\ Andrew Howroyd, Jan 22 2021
Formula
Column-wise partial sums of A327372.
Extensions
Terms a(21) and beyond from Andrew Howroyd, Sep 05 2019