cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327380 Number of colored integer partitions of n such that two colors are used and parts differ by size or by color.

Original entry on oeis.org

1, 2, 5, 8, 14, 22, 34, 50, 73, 104, 146, 202, 275, 372, 498, 660, 868, 1134, 1470, 1896, 2430, 3098, 3931, 4964, 6240, 7814, 9746, 12110, 14997, 18510, 22772, 27934, 34166, 41672, 50698, 61520, 74470, 89940, 108378, 130312, 156364, 187244, 223785, 266962
Offset: 2

Views

Author

Alois P. Heinz, Sep 03 2019

Keywords

Comments

With offset 0 convolution square of A000009(k+1). - George Beck, Jan 28 2021

Examples

			a(4) = 5: 2a1a1b, 2b1a1b, 2a2b, 3a1b, 3b1a.
a(5) = 8: 2a2b1a, 2a2b1b, 3a1a1b, 3b1a1b, 3a2b, 3b2a, 4a1b, 4b1a.
		

Crossrefs

Column k=2 of A308680.
Cf. A000009.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
          b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
        end:
    a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(2):
    seq(a(n), n=2..45);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]*Binomial[k, j]][n - i*j], {j, 0, Min[k, n/i]}]]];
    a[n_] := With[{k = 2}, Sum[b[n, n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]];
    a /@ Range[2, 45] (* Jean-François Alcover, May 06 2020, after Maple *)

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(9/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 14 2019
G.f.: (-1 + Product_{j>=1} (1 + x^j))^2. - Alois P. Heinz, Jan 29 2021