A327380 Number of colored integer partitions of n such that two colors are used and parts differ by size or by color.
1, 2, 5, 8, 14, 22, 34, 50, 73, 104, 146, 202, 275, 372, 498, 660, 868, 1134, 1470, 1896, 2430, 3098, 3931, 4964, 6240, 7814, 9746, 12110, 14997, 18510, 22772, 27934, 34166, 41672, 50698, 61520, 74470, 89940, 108378, 130312, 156364, 187244, 223785, 266962
Offset: 2
Keywords
Examples
a(4) = 5: 2a1a1b, 2b1a1b, 2a2b, 3a1b, 3b1a. a(5) = 8: 2a2b1a, 2a2b1b, 3a1a1b, 3b1a1b, 3a2b, 3b2a, 4a1b, 4b1a.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 2..10000 (terms 2..5000 from Alois P. Heinz)
- Wikipedia, Partition (number theory)
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t-> b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i)))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(2): seq(a(n), n=2..45);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]*Binomial[k, j]][n - i*j], {j, 0, Min[k, n/i]}]]]; a[n_] := With[{k = 2}, Sum[b[n, n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]]; a /@ Range[2, 45] (* Jean-François Alcover, May 06 2020, after Maple *)
Formula
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(9/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 14 2019
G.f.: (-1 + Product_{j>=1} (1 + x^j))^2. - Alois P. Heinz, Jan 29 2021
Comments