cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327382 Number of colored integer partitions of n such that four colors are used and parts differ by size or by color.

Original entry on oeis.org

1, 4, 14, 36, 85, 180, 360, 680, 1234, 2160, 3674, 6092, 9882, 15724, 24594, 37884, 57553, 86344, 128060, 187948, 273178, 393516, 562158, 796860, 1121375, 1567336, 2176664, 3004692, 4124130, 5630160, 7646916, 10335696, 13905376, 18625564, 24843142, 33003072
Offset: 4

Views

Author

Alois P. Heinz, Sep 03 2019

Keywords

Comments

With offset 0 four-fold convolution of A000009(k+1). - George Beck, Jan 29 2021

Crossrefs

Column k=4 of A308680.
Cf. A000009.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
          b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
        end:
    a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(4):
    seq(a(n), n=4..45);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k] Binomial[k, j]], {j, 0, Min[k, n/i]}]]];
    a[n_] := With[{k = 4}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]];
    a /@ Range[4, 45] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)

Formula

a(n) ~ exp(2*Pi*sqrt(n/3)) / (8 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 14 2019
G.f.: (-1 + Product_{m >= 1} (1 + x^m))^4. - George Beck, Jan 29 2021