A327382 Number of colored integer partitions of n such that four colors are used and parts differ by size or by color.
1, 4, 14, 36, 85, 180, 360, 680, 1234, 2160, 3674, 6092, 9882, 15724, 24594, 37884, 57553, 86344, 128060, 187948, 273178, 393516, 562158, 796860, 1121375, 1567336, 2176664, 3004692, 4124130, 5630160, 7646916, 10335696, 13905376, 18625564, 24843142, 33003072
Offset: 4
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 4..10000 (terms 4..5000 from Alois P. Heinz)
- Wikipedia, Partition (number theory)
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t-> b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i)))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(4): seq(a(n), n=4..45);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k] Binomial[k, j]], {j, 0, Min[k, n/i]}]]]; a[n_] := With[{k = 4}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]]; a /@ Range[4, 45] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)
Formula
a(n) ~ exp(2*Pi*sqrt(n/3)) / (8 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 14 2019
G.f.: (-1 + Product_{m >= 1} (1 + x^m))^4. - George Beck, Jan 29 2021
Comments