A327409 Smallest integer > 0 so that its remainders modulo the first n primes are at least half their respective moduli.
1, 5, 23, 53, 53, 293, 503, 713, 1439, 1439, 16673, 16673, 16673, 16673, 16673, 16673, 16673, 298583, 728153, 728153, 728153, 19420253, 19420253, 66663659, 207178199, 384974819, 384974819, 384974819, 546086693, 546086693, 8504041103, 22060162703, 60826761629, 60826761629
Offset: 1
Keywords
Examples
a(6) = 293. 293 mod 2 = 1 >= 2/2 293 mod 3 = 2 >= 3/2 293 mod 5 = 3 >= 5/2 293 mod 7 = 6 >= 7/2 293 mod 11 = 7 >= 11/2 293 mod 13 = 7 >= 13/2 293 is the smallest integer > 0 satisfying these inequalities for the first 6 primes.
Links
- Bert Dobbelaere, Table of n, a(n) for n = 1..50
Programs
-
PARI
isok(k, vp) = {for (i=1, #vp, if ((k % vp[i]) < vp[i]/2, return (0));); return (1);} a(n) = {my(k=1, vp = primes(n)); while (!isok(k, vp), k++); k;} \\ Michel Marcus, Sep 08 2019