A327439 a(0)=1. If a(n-1) and n are relatively prime and a(n-1)!=1, a(n) = a(n-1) - 1. Otherwise (i.e., if a(n-1) and n share a common factor or a(n-1)=1), a(n) = a(n-1) + gcd(a(n-1),n) + 1.
1, 3, 2, 1, 3, 2, 5, 4, 9, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 3, 2, 5, 4, 9, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 3, 2, 5, 4, 7, 6, 9, 8, 11, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11
Offset: 0
Links
- Nathaniel J. Strout, Table of n, a(n) for n = 0..116000
Programs
-
Mathematica
a[0] = 1; a[n_] := a[n] = If[a[n - 1] != 1 && CoprimeQ[n, a[n - 1]], a[n - 1] - 1, a[n - 1] + GCD[a[n - 1], n] + 1]; Array[a, 101, 0] (* Amiram Eldar, Feb 24 2020 *) nxt[{n_,a_}]:={n+1,If[CoprimeQ[n+1,a]&&a!=1,a-1,a+GCD[a,n+1]+1]}; NestList[nxt,{0,1},70][[;;,2]] (* Harvey P. Dale, Jun 08 2024 *)
-
Python
import math import matplotlib.pyplot as plt num = 10000 x = [] y = [] # y is the main sequence def sequence(): a = 1 y.append(a) for i in range(num): if (a != 1) and (math.gcd(a,i+1) == 1): a -= 1 else: a += math.gcd(a,i+1)+1 x.append(i) y.append(a) x.append(num) sequence() # code only regarding the plot. plt.xlim(0,num) plt.ylim(0,num) plt.plot(x, y) plt.xlabel('x - axis') plt.ylabel('y - axis') plt.title('Plot of Sequence') plt.show()
Comments