cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327450 Number of ways the first n squares can be partitioned into three sets with equal sums.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 137, 211, 0, 0, 0, 3035, 0, 0, 0, 120465, 259383, 0, 0, 0, 12328889, 0, 0, 0, 673380980, 1659966694, 0, 0, 0, 69819104134, 0, 0, 0, 3761284888715, 9660240745536, 0, 0, 0, 537238185892321, 0, 0, 0, 29922345673502904
Offset: 1

Views

Author

N. J. A. Sloane, Sep 20 2019

Keywords

Examples

			The unique smallest solution (for n = 13) is 1 + 9 + 25 + 36 + 81 + 121 = 16 + 49 + 64 + 144 = 4 + 100 + 169.
		

References

  • Keith F. Lynch, Posting to Math Fun Mailing List, Sep 19 2019.

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember; `if`(n<2, 0, n^2+s(n-1)) end:
    b:= proc(n, x, y) option remember; `if`(n=1, 1, (p-> (l->
          add(`if`(p>l[i], 0, b(n-1, sort(subsop(i=l[i]-p, l))
                 [1..2][])), i=1..3))([x, y, s(n)-x-y]))(n^2))
        end:
    a:= n-> `if`(irem(1+s(n), 3, 'q')=0, b(n, q-1, q)/2, 0):
    seq(a(n), n=1..27);  # Alois P. Heinz, Sep 29 2019
  • Mathematica
    s[n_] := s[n] = If[n < 2, 0, n^2 + s[n - 1]];
    b[n_, x_, y_] := b[n, x, y] = Module[{p, l}, If[n == 1, 1, p = n^2; l = {x, y, s[n] - x - y}; Sum[If[p > l[[i]], 0, b[n - 1, Sequence @@ Sort[ ReplacePart[l, i -> l[[i]] - p]][[1 ;; 2]]]], {i, 1, 3}]]];
    a[n_] := Module[{q, r}, {q, r} = QuotientRemainder[1 + s[n], 3]; If[r == 0, b[n, q - 1, q]/2, 0]];
    Array[a, 30] (* Jean-François Alcover, Dec 04 2020, after Alois P. Heinz *)

Formula

a(n) > 0 => n in { A140282 }. - Alois P. Heinz, Sep 29 2019

Extensions

a(28)-a(45) from Alois P. Heinz, Sep 29 2019
a(46)-a(53) from Alois P. Heinz, Oct 05 2019