A327450 Number of ways the first n squares can be partitioned into three sets with equal sums.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 137, 211, 0, 0, 0, 3035, 0, 0, 0, 120465, 259383, 0, 0, 0, 12328889, 0, 0, 0, 673380980, 1659966694, 0, 0, 0, 69819104134, 0, 0, 0, 3761284888715, 9660240745536, 0, 0, 0, 537238185892321, 0, 0, 0, 29922345673502904
Offset: 1
Keywords
Examples
The unique smallest solution (for n = 13) is 1 + 9 + 25 + 36 + 81 + 121 = 16 + 49 + 64 + 144 = 4 + 100 + 169.
References
- Keith F. Lynch, Posting to Math Fun Mailing List, Sep 19 2019.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..57
Programs
-
Maple
s:= proc(n) option remember; `if`(n<2, 0, n^2+s(n-1)) end: b:= proc(n, x, y) option remember; `if`(n=1, 1, (p-> (l-> add(`if`(p>l[i], 0, b(n-1, sort(subsop(i=l[i]-p, l)) [1..2][])), i=1..3))([x, y, s(n)-x-y]))(n^2)) end: a:= n-> `if`(irem(1+s(n), 3, 'q')=0, b(n, q-1, q)/2, 0): seq(a(n), n=1..27); # Alois P. Heinz, Sep 29 2019
-
Mathematica
s[n_] := s[n] = If[n < 2, 0, n^2 + s[n - 1]]; b[n_, x_, y_] := b[n, x, y] = Module[{p, l}, If[n == 1, 1, p = n^2; l = {x, y, s[n] - x - y}; Sum[If[p > l[[i]], 0, b[n - 1, Sequence @@ Sort[ ReplacePart[l, i -> l[[i]] - p]][[1 ;; 2]]]], {i, 1, 3}]]]; a[n_] := Module[{q, r}, {q, r} = QuotientRemainder[1 + s[n], 3]; If[r == 0, b[n, q - 1, q]/2, 0]]; Array[a, 30] (* Jean-François Alcover, Dec 04 2020, after Alois P. Heinz *)
Formula
a(n) > 0 => n in { A140282 }. - Alois P. Heinz, Sep 29 2019
Extensions
a(28)-a(45) from Alois P. Heinz, Sep 29 2019
a(46)-a(53) from Alois P. Heinz, Oct 05 2019