A327474 Number of distinct means of subsets of {1..n}, where {} has mean 0.
1, 2, 4, 6, 10, 16, 26, 38, 56, 78, 106, 138, 180, 226, 284, 348, 420, 500, 596, 698, 818, 946, 1086, 1236, 1408, 1588, 1788, 2000, 2230, 2472, 2742, 3020, 3328, 3652, 3996, 4356, 4740, 5136, 5568, 6018, 6492, 6982, 7512, 8054, 8638, 9242, 9870, 10520, 11216
Offset: 0
Keywords
Examples
The a(3) = 6 distinct means are 0, 1, 3/2, 2, 5/2, 3.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, [1, 2, 4, 6][n+1], 2*a(n-1)-a(n-2)+numtheory[phi](n-1)) end: seq(a(n), n=0..50); # Alois P. Heinz, Feb 22 2023
-
Mathematica
Table[Length[Union[Mean/@Subsets[Range[n]]]],{n,0,10}]
-
Python
from itertools import count, islice from sympy import totient def A327474_gen(): # generator of terms a, b = 4, 6 yield from (1,2,4,6) for n in count(3): a, b = b, (b<<1)-a+totient(n) yield b A327474_list = list(islice(A327474_gen(),30)) # Chai Wah Wu, Feb 22 2023
Formula
a(n) = A135342(n) + 1.
a(n) = 2*a(n-1) - a(n-2) + phi(n-1) for n>3. - Chai Wah Wu, Feb 22 2023