A327487 T(n, k) are the summands given by the generating function of A327420(n), triangle read by rows, T(n,k) for 0 <= k <= n.
1, 2, -2, 3, -3, 2, 4, -4, 3, 0, 5, -5, 4, 0, 2, 6, -6, 5, 0, 0, 0, 7, -7, 6, 0, 0, 3, 0, 8, -8, 7, 0, 0, 0, 0, 0, 9, -9, 8, 0, 0, 0, 4, 3, 0, 10, -10, 9, 0, 0, 0, 0, 0, -3, -2, 11, -11, 10, 0, 0, 0, 0, 5, 0, -3, 2, 12, -12, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle starts (at the end of the line is the row sum (A327420)): [ 0] [ 1] 1 [ 1] [ 2, -2] 0 [ 2] [ 3, -3, 2] 2 [ 3] [ 4, -4, 3, 0] 3 [ 4] [ 5, -5, 4, 0, 2] 6 [ 5] [ 6, -6, 5, 0, 0, 0] 5 [ 6] [ 7, -7, 6, 0, 0, 3, 0] 9 [ 7] [ 8, -8, 7, 0, 0, 0, 0, 0] 7 [ 8] [ 9, -9, 8, 0, 0, 0, 4, 3, 0] 15 [ 9] [10, -10, 9, 0, 0, 0, 0, 0, -3, -2] 4 [10] [11, -11, 10, 0, 0, 0, 0, 5, 0, -3, 2] 14
Programs
-
SageMath
def divsign(s, k): if not k.divides(s): return 0 return (-1)^(s//k)*k def A327487row(n): s = n + 1 r = srange(s, 1, -1) S = [-divsign(s, s)] for k in r: s += divsign(s, k) S.append(-divsign(s, k)) return S # Prints the triangle like in the example section. for n in (0..10): print([n], A327487row(n), sum(A327487row(n)))
Formula
Sum_{k=0..n} T(n, k) = A327420(n).