A327491 a(0) = 0. If 4 divides n then a(n) = valuation(n, 2) else a(n) = (n mod 2) + 1.
0, 2, 1, 2, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 1, 2, 5, 2, 1, 2, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 1, 2, 6, 2, 1, 2, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2
Offset: 0
Keywords
Examples
Seen as an irregular table for n >= 1: 2, 1, 2, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 1, 2, 5, 2, 1, 2, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, ....
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
Programs
-
Maple
A327491 := n -> if n = 0 then 0 elif 0 = irem(n, 4) then padic[ordp](n, 2) elif 0 = irem(n, 2) then 1 else 2 fi: seq(A327491(n), n=0..87);
-
Mathematica
a[0] = 0; a[n_] := If[Divisible[n, 4], IntegerExponent[n, 2], Mod[n, 2] + 1]; Array[a, 100, 0] (* Amiram Eldar, Aug 30 2024 *)
-
PARI
a(n)={if(n==0, 0, if(n%4, n%2 + 1, valuation(n,2)))} \\ Andrew Howroyd, Sep 28 2019
-
SageMath
def A327491(n): if n == 0: return 0 if 4.divides(n): return valuation(n, 2) return n % 2 + 1 print([A327491(n) for n in (0..87)])
Formula
a(0) = 0; if n is odd then a(n) = 2, otherwise a(n) = A007814(n). - Andrey Zabolotskiy, Jan 08 2024
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Aug 30 2024