cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327493 a(n) = 2^A327492(n).

Original entry on oeis.org

1, 4, 8, 32, 128, 512, 1024, 4096, 32768, 131072, 262144, 1048576, 4194304, 16777216, 33554432, 134217728, 2147483648, 8589934592, 17179869184, 68719476736, 274877906944, 1099511627776, 2199023255552, 8796093022208, 70368744177664, 281474976710656, 562949953421312
Offset: 0

Views

Author

Peter Luschny, Sep 27 2019

Keywords

Crossrefs

Programs

  • Julia
    bitcount(n) = sum(digits(n, base = 2))
    A327493(n) = 2^(2n - bitcount(n) + mod(n, 2))
    [A327493(n) for n in 0:26] |> println # Peter Luschny, Oct 03 2019
  • Maple
    A327493 := n -> 2^(A327492_list(n+1)[n+1]):
    seq(A327493(n), n = 0..26);
  • PARI
    seq(n)={my(a=vector(n+1)); a[1]=1; for(n=1, n, a[n+1] = a[n] * 2^if(n%4, n%2 + 1, valuation(n,2))); a} \\ Andrew Howroyd, Sep 28 2019
    
  • PARI
    a(n)={ denominator(sum(j=0, n, j!/(2^j*(j\2)!)^2)) } \\ Andrew Howroyd, Sep 28 2019
    

Formula

a(n) = denominator(b(n)) where b(n) = n!/(2^n*floor(n/2)!)^2 is the normalized swinging factorial (A056040).