A327495 a(n) = numerator( Sum_{j=0..n} (j!/(2^j*floor(j/2)!)^2)^2 ).
1, 17, 69, 1113, 17817, 285297, 1141213, 18260633, 1168681737, 18699007017, 74796032037, 1196736992841, 19147791938817, 306364680039081, 1225458720340365, 19607339566855065, 5019478929156305865, 80311662878468159865, 321246651514020383485, 5139946424277661728785
Offset: 0
Examples
r(n) = 1, 17/16, 69/64, 1113/1024, 17817/16384, 285297/262144, 1141213/1048576, 18260633/16777216, ...
Crossrefs
Programs
-
Maple
A327495 := n -> numer(add(j!^2/(2^j*iquo(j,2)!)^4, j=0..n)): seq(A327495(n), n=0..19);
-
PARI
a(n)={ numerator(sum(j=0, n, (j!/(2^j*(j\2)!)^2)^2 )) } \\ Andrew Howroyd, Sep 28 2019
Comments