A327513 Number of divisors of n that are 1, 2, or a nonprime number whose prime indices are pairwise coprime.
1, 2, 1, 3, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 2, 5, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 6, 1, 6, 2, 3, 2, 5, 1, 3, 1, 7, 1, 4, 1, 5, 2, 3, 1, 9, 1, 3, 2, 5, 1, 3, 2, 7, 1, 3, 1, 10, 1, 3, 1, 7, 1, 6, 1, 5, 2, 6, 1, 7, 1, 3, 2, 5, 2, 4, 1, 9, 1, 3, 1, 7, 2, 3, 1, 7, 1, 6, 1, 5, 2, 3, 2, 11, 1, 3, 2, 5, 1, 6, 1, 7, 3
Offset: 1
Keywords
Examples
The divisors of 72 that are 1, 2, or nonprime numbers whose prime indices are pairwise coprime are: {1, 2, 4, 6, 8, 12, 24}, so a(72) = 7.
Links
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Length[Select[Divisors[n],#==1||CoprimeQ@@primeMS[#]&]],{n,100}]
-
PARI
isA302696(n) = if(isprimepower(n),!(n%2), if(!issquarefree(n>>valuation(n,2)), 0, my(pis=apply(primepi,factor(n)[,1])); (lcm(pis)==factorback(pis)))); A327513(n) = sumdiv(n,d,isA302696(d)); \\ Antti Karttunen, Dec 06 2021
Extensions
Data section extended up to 105 terms by Antti Karttunen, Dec 06 2021
Comments