cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327519 Number of factorizations of A305078(n - 1), the n-th connected number, into connected numbers > 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 4, 2, 1, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 4, 2, 3, 1, 2, 1, 2, 1, 1, 4, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 2, 7, 1, 1, 4, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 7, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 21 2019

Keywords

Comments

A number n with prime factorization n = prime(m_1)^s_1 * ... * prime(m_k)^s_k is connected if the simple labeled graph with vertex set {m_1,...,m_k} and edges between any two vertices with a common divisor greater than 1 is connected. Connected numbers are listed in A305078.

Examples

			The a(190) = 8 factorizations of 585 together with the corresponding multiset partitions of {2,2,3,6}:
  (3*3*5*13)  {{2},{2},{3},{6}}
  (3*3*65)    {{2},{2},{3,6}}
  (3*5*39)    {{2},{3},{2,6}}
  (3*195)     {{2},{2,3,6}}
  (5*9*13)    {{3},{2,2},{6}}
  (5*117)     {{3},{2,2,6}}
  (9*65)      {{2,2},{3,6}}
  (585)       {{2,2,3,6}}
		

Crossrefs

See link for additional cross-references.

Programs

  • Mathematica
    nn=100;
    zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    y=Select[Range[nn],Length[zsm[primeMS[#]]]==1&];
    Table[Length[facsusing[y,n]],{n,y}]