A327523 Number of factorizations of the n-th number with distinct prime multiplicities A130091(n) into numbers > 1 with distinct prime multiplicities.
1, 1, 1, 2, 1, 1, 3, 2, 1, 3, 1, 5, 1, 3, 1, 3, 1, 5, 2, 3, 3, 1, 1, 7, 1, 5, 1, 1, 3, 3, 1, 9, 2, 3, 3, 1, 5, 5, 1, 1, 3, 11, 1, 3, 1, 11, 1, 3, 3, 1, 9, 5, 1, 5, 1, 3, 14, 1, 3, 3, 1, 1, 5, 1, 11, 1, 9, 1, 3, 3, 2, 3, 3, 1, 15, 1, 5, 5, 1, 1, 20, 3, 3, 1, 1
Offset: 1
Keywords
Examples
The a(57) = 14 factorizations of 96 together with the corresponding multiset partitions of {1,1,1,1,1,2}: (2*2*2*2*2*3) {{1}{1}{1}{1}{1}{2}} (2*2*2*3*4) {{1}{1}{1}{2}{11}} (2*2*2*12) {{1}{1}{1}{112}} (2*2*3*8) {{1}{1}{2}{111}} (2*2*24) {{1}{1}{1112}} (2*3*4*4) {{1}{2}{11}{11}} (2*3*16) {{1}{2}{1111}} (2*4*12) {{1}{11}{112}} (2*48) {{1}{11112}} (3*4*8) {{2}{11}{111}} (3*32) {{2}{11111}} (4*24) {{11}{1112}} (8*12) {{111}{112}} (96) {{111112}}
Links
Programs
-
Mathematica
nn=100; facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; y=Select[Range[nn],UnsameQ@@Last/@FactorInteger[#]&]; Table[Length[facsusing[Rest[y],n]],{n,y}]
Comments