A327524 Number of factorizations of the n-th uniform number A072774(n) into uniform numbers > 1.
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 1, 2, 2, 5, 1, 1, 2, 2, 1, 2, 2, 3, 1, 5, 1, 7, 2, 2, 2, 7, 1, 2, 2, 1, 5, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 11, 2, 5, 1, 2, 5, 1, 1, 2, 2, 5, 1, 5, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 7, 1, 5, 1, 5, 2, 1, 1, 5, 2, 1, 5, 2, 2, 2
Offset: 1
Keywords
Examples
The a(31) = 7 factorizations of 36 into uniform numbers together with the corresponding multiset partitions of {1,1,2,2}: (2*2*3*3) {{1},{1},{2},{2}} (2*2*9) {{1},{1},{2,2}} (2*3*6) {{1},{2},{1,2}} (3*3*4) {{2},{2},{1,1}} (4*9) {{1,1},{2,2}} (6*6) {{1,2},{1,2}} (36) {{1,1,2,2}}
Links
Crossrefs
Programs
-
Mathematica
nn=100; facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; y=Select[Range[nn],SameQ@@Last/@FactorInteger[#]&]; Table[Length[facsusing[Rest[y],n]],{n,y}];
Comments