cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327524 Number of factorizations of the n-th uniform number A072774(n) into uniform numbers > 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 1, 2, 2, 5, 1, 1, 2, 2, 1, 2, 2, 3, 1, 5, 1, 7, 2, 2, 2, 7, 1, 2, 2, 1, 5, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 11, 2, 5, 1, 2, 5, 1, 1, 2, 2, 5, 1, 5, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 7, 1, 5, 1, 5, 2, 1, 1, 5, 2, 1, 5, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2019

Keywords

Comments

A number is uniform if its prime multiplicities are all equal, meaning it is a power of a squarefree number. Uniform numbers are listed in A072774.

Examples

			The a(31) = 7 factorizations of 36 into uniform numbers together with the corresponding multiset partitions of {1,1,2,2}:
  (2*2*3*3)  {{1},{1},{2},{2}}
  (2*2*9)    {{1},{1},{2,2}}
  (2*3*6)    {{1},{2},{1,2}}
  (3*3*4)    {{2},{2},{1,1}}
  (4*9)      {{1,1},{2,2}}
  (6*6)      {{1,2},{1,2}}
  (36)       {{1,1,2,2}}
		

Crossrefs

See link for additional cross-references.

Programs

  • Mathematica
    nn=100;
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    y=Select[Range[nn],SameQ@@Last/@FactorInteger[#]&];
    Table[Length[facsusing[Rest[y],n]],{n,y}];