A327527 Number of uniform divisors of n.
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 5, 2, 4, 4, 5, 2, 5, 2, 5, 4, 4, 2, 6, 3, 4, 4, 5, 2, 8, 2, 6, 4, 4, 4, 7, 2, 4, 4, 6, 2, 8, 2, 5, 5, 4, 2, 7, 3, 5, 4, 5, 2, 6, 4, 6, 4, 4, 2, 9, 2, 4, 5, 7, 4, 8, 2, 5, 4, 8, 2, 8, 2, 4, 5, 5, 4, 8, 2, 7, 5, 4, 2, 9, 4, 4, 4, 6, 2, 9, 4, 5, 4, 4, 4, 8, 2, 5, 5, 7, 2, 8, 2, 6, 8
Offset: 1
Keywords
Examples
The uniform divisors of 40 are {1, 2, 4, 5, 8, 10}, so a(40) = 6.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Gus Wiseman, Sequences counting and encoding certain classes of multisets.
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Divisors[n],SameQ@@Last/@FactorInteger[#]&]],{n,100}] a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, 1 + Total[2^Accumulate[Count[e, #] & /@ Range[Max[e], 1, -1]] - 1]]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Dec 19 2023 *)
-
PARI
isA072774(n) = { ispower(n, , &n); issquarefree(n); }; \\ From A072774 A327527(n) = sumdiv(n,d,isA072774(d)); \\ Antti Karttunen, Nov 13 2021
Formula
From Amiram Eldar, Dec 19 2023: (Start)
Extensions
Data section extended up to 105 terms by Antti Karttunen, Nov 13 2021
Comments