A327541 A linear divisibility sequence of order 8.
1, 4, 16, 72, 271, 1024, 3809, 13968, 50992, 185364, 672079, 2433024, 8798609, 31797532, 114864976, 414821664, 1497814207, 5407599616, 19521754897, 70471314792, 254385558128, 918256161068, 3314588702303, 11964424716288, 43186863073121
Offset: 1
Links
- P. Bala, Some linear divisibility sequences of order 8
- E. L. Roettger, H. C. Williams, R. K. Guy, Some extensions of the Lucas functions, Number Theory and Related Fields: In Memory of Alf van der Poorten, Series: Springer Proceedings in Mathematics & Statistics 43, 271-311 (2013), chapter 5.
- Index entries for linear recurrences with constant coefficients, signature (4,1,-4,-16,-4,1,4,-1).
Programs
-
Mathematica
LinearRecurrence[{4, 1, -4, -16, -4, 1, 4, -1}, {1, 4, 16, 72, 271, 1024, 3809, 13968}, 25] (* Jean-François Alcover, Nov 12 2019 *)
Formula
a(n) = (1/2) * Sum_{i = 1..4} (alpha(i)^n - 1/alpha(i)^n), where alpha(i), 1 <= i <= 4, are the zeros of the quartic polynomial 1 - x - 2*x^2 - 3*x^3 + x^4.
a(n)^2 = -(1/4) * Product_{i = 1..6} (1 - beta(i)^n), where beta(i), 1 <= i <= 6, are the zeros of the sextic polynomial x^6 + 2*x^5 + 2*x^4 - 14*x^3 + 2*x^2 + 2*x + 1.
a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3) - 16*a(n-4) - 4*a(n-5) + a(n-6) + 4*a(n-7) - a(n-8).
O.g.f.: x*(x^6 - x^4 + 8*x^3 - x^2 + 1)/((x^4 - x^3 - 2*x^2 - 3*x + 1)*(x^4 - 3*x^3 - 2*x^2 - x + 1)).
Comments