cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327549 Number T(n,k) of compositions of partitions of n with exactly k compositions; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 2, 1, 0, 8, 8, 2, 1, 0, 16, 16, 8, 2, 1, 0, 32, 48, 24, 8, 2, 1, 0, 64, 96, 64, 24, 8, 2, 1, 0, 128, 256, 160, 80, 24, 8, 2, 1, 0, 256, 512, 448, 192, 80, 24, 8, 2, 1, 0, 512, 1280, 1024, 576, 224, 80, 24, 8, 2, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2019

Keywords

Examples

			T(3,1) = 4: 3, 21, 12, 111.
T(3,2) = 2: 2|1, 11|1.
T(3,3) = 1: 1|1|1.
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   2,    1;
  0,   4,    2,    1;
  0,   8,    8,    2,   1;
  0,  16,   16,    8,   2,   1;
  0,  32,   48,   24,   8,   2,  1;
  0,  64,   96,   64,  24,   8,  2,  1;
  0, 128,  256,  160,  80,  24,  8,  2, 1;
  0, 256,  512,  448, 192,  80, 24,  8, 2, 1;
  0, 512, 1280, 1024, 576, 224, 80, 24, 8, 2, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A000007, A011782 (for n>0), A134353(n-2) (for n>1).
Row sums give A075900.
T(2n,n) gives A327550.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+expand(2^(i-1)*x*b(n-i, min(n-i, i)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + 2^(i-1) x b[n-i, Min[n-i, i]]]];
    T[n_] := CoefficientList[b[n, n], x];
    T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A327548(n).