A327549 Number T(n,k) of compositions of partitions of n with exactly k compositions; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 2, 1, 0, 4, 2, 1, 0, 8, 8, 2, 1, 0, 16, 16, 8, 2, 1, 0, 32, 48, 24, 8, 2, 1, 0, 64, 96, 64, 24, 8, 2, 1, 0, 128, 256, 160, 80, 24, 8, 2, 1, 0, 256, 512, 448, 192, 80, 24, 8, 2, 1, 0, 512, 1280, 1024, 576, 224, 80, 24, 8, 2, 1
Offset: 0
Examples
T(3,1) = 4: 3, 21, 12, 111. T(3,2) = 2: 2|1, 11|1. T(3,3) = 1: 1|1|1. Triangle T(n,k) begins: 1; 0, 1; 0, 2, 1; 0, 4, 2, 1; 0, 8, 8, 2, 1; 0, 16, 16, 8, 2, 1; 0, 32, 48, 24, 8, 2, 1; 0, 64, 96, 64, 24, 8, 2, 1; 0, 128, 256, 160, 80, 24, 8, 2, 1; 0, 256, 512, 448, 192, 80, 24, 8, 2, 1; 0, 512, 1280, 1024, 576, 224, 80, 24, 8, 2, 1; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+expand(2^(i-1)*x*b(n-i, min(n-i, i))))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)): seq(T(n), n=0..12);
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + 2^(i-1) x b[n-i, Min[n-i, i]]]]; T[n_] := CoefficientList[b[n, n], x]; T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)
Formula
Sum_{k=1..n} k * T(n,k) = A327548(n).