cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327553 Number of partitions in all twice partitions of n where both partitions are strict.

Original entry on oeis.org

0, 1, 1, 4, 6, 11, 20, 33, 57, 100, 165, 254, 417, 649, 1039, 1648, 2540, 3836, 6020, 9035, 13645, 20752, 31054, 45993, 68668, 101511, 149525, 220132, 321614, 468031, 684124, 989703, 1427054, 2064859, 2964987, 4254028, 6090453, 8686574, 12366583, 17598885
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2019

Keywords

Examples

			a(3) = 4 = 1+1+2 counting the partitions in 3, 21, 2|1.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 p+[0, p[1]])(
           g(i)*b(n-i, min(n-i, i-1)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..42);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j] Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n];
    b[n_, i_] := b[n, i] = If[i(i+1)/2 < n, {0, 0}, If[n==0, {1, 0}, b[n, i-1] + Function[p, p + {0, p[[1]]}][g[i] b[n-i, Min[n-i, i-1]]]]];
    a[n_] := b[n, n][[2]];
    a /@ Range[0, 42] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)