A327553 Number of partitions in all twice partitions of n where both partitions are strict.
0, 1, 1, 4, 6, 11, 20, 33, 57, 100, 165, 254, 417, 649, 1039, 1648, 2540, 3836, 6020, 9035, 13645, 20752, 31054, 45993, 68668, 101511, 149525, 220132, 321614, 468031, 684124, 989703, 1427054, 2064859, 2964987, 4254028, 6090453, 8686574, 12366583, 17598885
Offset: 0
Keywords
Examples
a(3) = 4 = 1+1+2 counting the partitions in 3, 21, 2|1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add( `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n) end: b:= proc(n, i) option remember; `if`(i*(i+1)/2
p+[0, p[1]])( g(i)*b(n-i, min(n-i, i-1))))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..42); -
Mathematica
g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j] Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n]; b[n_, i_] := b[n, i] = If[i(i+1)/2 < n, {0, 0}, If[n==0, {1, 0}, b[n, i-1] + Function[p, p + {0, p[[1]]}][g[i] b[n-i, Min[n-i, i-1]]]]]; a[n_] := b[n, n][[2]]; a /@ Range[0, 42] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)