A327554 Number of partitions in all twice partitions of n where the second partition is strict.
0, 1, 3, 7, 15, 29, 60, 108, 201, 364, 643, 1106, 1944, 3253, 5493, 9183, 15161, 24727, 40559, 65173, 104963, 167747, 266452, 420329, 663658, 1036765, 1618221, 2514169, 3891121, 5992868, 9224213, 14107699, 21548428, 32798065, 49779331, 75301296, 113757367
Offset: 0
Keywords
Examples
a(3) = 7 = 1+1+2+3 counting the partitions in 3, 21, 2|1, 1|1|1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4000
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add( `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n) end: b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, b(n, i-1) +(p-> p+[0, p[1]])(g(i)*b(n-i, min(n-i, i))))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..42);
-
Mathematica
g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j] Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n]; b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, b[n, i - 1] + Function[p, p + {0, p[[1]]}][g[i] b[n - i, Min[n - i, i]]]]]; a[n_] := b[n, n][[2]]; a /@ Range[0, 42] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)