cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327576 Decimal expansion of the constant that appears in the asymptotic formula for average order of the number of infinitary divisors function (A037445).

Original entry on oeis.org

3, 6, 6, 6, 2, 5, 2, 7, 6, 9, 4, 5, 3, 8, 1, 9, 0, 9, 5, 5, 6, 5, 3, 2, 7, 2, 0, 6, 8, 7, 0, 0, 1, 5, 6, 3, 0, 3, 3, 6, 1, 2, 1, 5, 5, 9, 7, 1, 0, 0, 9, 2, 7, 3, 0, 3, 7, 5, 8, 7, 5, 1, 5, 3, 0, 5, 7, 4, 7, 5, 3, 3, 4, 4, 7, 4, 9, 2, 5, 0, 7, 5, 7, 9, 0, 5, 6
Offset: 0

Views

Author

Amiram Eldar, Sep 17 2019

Keywords

Examples

			0.366625276945381909556532720687001563033612155971009...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.

Crossrefs

Cf. A059956 (corresponding constant for unitary divisors), A306071 (bi-unitary).

Programs

  • Mathematica
    m = 1000; em = 10; f[x_] := Sum[Log[1 - 1/(1 + 1/x^(2^e))^2], {e, 0, em}]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; $MaxExtraPrecision = 1500; RealDigits[(1/2)*Exp[f[1/2] + f[1/3]]* Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - (1/2)^k - (1/3)^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals Limit_{n->oo} A327573(n)/(2 * n * log(n)). [Corrected by Amiram Eldar, May 07 2021]
Equals (1/2) * Product_{P} (1 - 1/(P+1)^2), where P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376).