A327586 Numbers k such that k^4 = a^3 + b^3 + c^3 for some pairwise coprime positive integers a,b,c.
39, 57, 70, 74, 106, 111, 147, 174, 209, 216, 236, 237, 244, 252, 291, 300, 318, 327, 333, 336, 342, 360, 366, 372, 387, 403, 417, 424, 450, 462, 489, 524, 540, 561, 582, 594, 615, 624, 636, 638, 651, 660, 673, 696, 700, 714, 739, 741, 768, 771, 804, 827, 837
Offset: 1
Keywords
Examples
a(3) = 70 is a term because 70^4 = 81^3 + 167^3 + 266^3, and 81, 167 and 266 are positive and pairwise coprime.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..549 (terms < 12000)
- Mathematics StackExchange, Sum of three perfect cubes is equal to a perfect fourth
- Giovanni Resta, Representations of k^4 for k<12000
Crossrefs
Cf. A024975.
Programs
-
Maple
N:= 200: # to get all terms <= N qmax:= N^4: Res:= {}: for a from 1 while a^3 < qmax do for b from a+1 while a^3 + b^3 < qmax do if igcd(a,b) <> 1 then next fi; for c from b+1 while a^3 + b^3 + c^3 <= qmax do if igcd(c,a*b) <> 1 then next fi; q:= a^3 + b^3 + c^3; if issqr(q) and issqr(sqrt(q)) then Res:= Res union {sqrt(sqrt(q))}; fi od od od: sort(convert(Res,list));
Extensions
More terms from Rémy Sigrist, Mar 04 2020
Comments