A338932
Numbers k such that the Diophantine equation x^3 + y^3 + z^3 = k has nontrivial primitive parametric solutions.
Original entry on oeis.org
1, 2, 128, 729, 1458, 4096, 65536, 93312, 2985984, 3906250, 16777216, 28697814, 33554432, 47775744, 80707214, 244140625, 250000000, 387420489, 1836660096, 2847656250, 4715895382, 5165261696, 12230590464, 13841287201, 17179869184, 21208998746, 24461180928
Offset: 1
128 is a term, because (4 - 3*(2*n - 1)^3, 4 + 3*(2*n - 1)^3, -3*(2*n - 1)^2) is a nontrivial primitive parametric solution of x^3 + y^3 + z^3 = 128.
- R. K. Guy, Unsolved Problems in Number Theory, D5.
- Kenji Koyama, On searching for solutions of the Diophantine equation x^3 + y^3 + 2z^3 = n, Math. Comp, 69 (2000), 1735-1742.
- J. C. P. Miller & M. F. C. Woollett, Solutions of the Diophantine equation x^3 + y^3 + z^3 = k, J. London Math. Soc. 30(1955), 101-110.
- Beniamino Segre, On the rational solutions of homogeneous cubic equations in four variables, Math. Notae, 11 (1951), 1-68.
-
t1 = 2*{1, 5, 7, 11, 13}^9;
t2 = 128*{1, 2, 4, 5, 7, 8}^9;
t3 = 1458*{1, 3, 5, 7, 9}^9;
t4 = 93312*{1, 2, 3, 4, 5}^9;
t5 = {1, 2, 4, 5, 7}^12;
t6 = 729*{1, 2, 3, 4, 5}^12;
Take[Union[t1, t2, t3, t4, t5, t6], 27]
A338933
Numbers k such that the Diophantine equation x^3 + y^3 + 2*z^3 = k has nontrivial primitive parametric solutions.
Original entry on oeis.org
2, 16, 128, 1024, 1458, 8192, 11664, 31250, 65536, 93312, 235298, 524288, 746496, 1062882, 2000000, 3543122, 3906250, 5971968, 9653618, 15059072, 22781250, 28697814, 33554432, 47775744, 48275138, 68024448, 80707214, 94091762, 128000000, 171532242, 226759808
Offset: 1
16 is a term, because when t is an integer, (6*(2*t + 1) - 9*(2*t + 1)^4, 9*(2*t + 1)^4, 2 - 9*(2*t + 1)^3) is a nontrivial primitive parametric solution of x^3 + y^3 + 2*z^3 = 16.
- R. K. Guy, Unsolved Problems in Number Theory, D5.
- Kenji Koyama, On searching for solutions of the Diophantine equation x^3 + y^3 + 2z^3 = n, Math. Comp, 69 (2000), 1735-1742.
- J. C. P. Miller & M. F. C. Woollett, Solutions of the Diophantine equation x^3 + y^3 + z^3 = k, J. London Math. Soc. 30(1955), 101-110.
- Beniamino Segre, On the rational solutions of homogeneous cubic equations in four variables, Math. Notae, 11 (1951), 1-68.
-
t1 = 2*Range[23]^6;
t2 = 2*{1, 2, 4, 5, 7, 8}^9;
t3 = 1458*Range[4]^9;
t4 = 2*{1, 5}^12;
t5 = 16*{1, 2, 4}^12;
t6 = 1458*{1, 3}^12;
t7 = 11664*{1, 2, 3}^12;
Take[Union[t1, t2, t3, t4, t5, t6, t7], 31]
Missing terms 1024 and 746496 added by
XU Pingya, Mar 14 2022
Showing 1-2 of 2 results.
Comments