cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327590 Number of partitions in all twice partitions of n.

Original entry on oeis.org

0, 1, 4, 10, 29, 63, 164, 339, 797, 1640, 3578, 7139, 15210, 29621, 60381, 117116, 232523, 442388, 863069, 1621560, 3105993, 5785525, 10894394, 20083143, 37434186, 68344449, 125774280, 228088127, 415668548, 747660318, 1351364816, 2413792653, 4327245170
Offset: 0

Views

Author

Alois P. Heinz, Sep 17 2019

Keywords

Examples

			a(3) = 10 = 1+1+1+2+2+3 counting the partitions in 3, 21, 111, 2|1, 11|1, 1|1|1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, b(n, i-1)+
          (p-> p+[0, p[1]])(combinat[numbpart](i)*b(n-i, min(n-i, i)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..42);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, b[n, i-1] + Function[p, p + {0, p[[1]]}][PartitionsP[i] b[n-i, Min[n-i, i]]]]];
    a[n_] := b[n, n][[2]];
    a /@ Range[0, 42] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)