A327590 Number of partitions in all twice partitions of n.
0, 1, 4, 10, 29, 63, 164, 339, 797, 1640, 3578, 7139, 15210, 29621, 60381, 117116, 232523, 442388, 863069, 1621560, 3105993, 5785525, 10894394, 20083143, 37434186, 68344449, 125774280, 228088127, 415668548, 747660318, 1351364816, 2413792653, 4327245170
Offset: 0
Keywords
Examples
a(3) = 10 = 1+1+1+2+2+3 counting the partitions in 3, 21, 111, 2|1, 11|1, 1|1|1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, b(n, i-1)+ (p-> p+[0, p[1]])(combinat[numbpart](i)*b(n-i, min(n-i, i))))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..42);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, b[n, i-1] + Function[p, p + {0, p[[1]]}][PartitionsP[i] b[n-i, Min[n-i, i]]]]]; a[n_] := b[n, n][[2]]; a /@ Range[0, 42] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)