A327592 Smallest prime (p) of six consecutive primes (p,q,r,u,v,w) for which the conic section discriminant (Delta) is a perfect square.
397, 68219, 87881, 316531, 430487, 440653, 639701, 691813, 732497, 982981, 1145773, 1226683, 1288337, 1291223, 1537751, 1563943, 1756663, 1913803, 2043397, 2134589, 2143391, 2317097, 2366789, 2528833, 3047311, 3107597, 3261523, 3678869, 3884389, 4143397
Offset: 1
Keywords
Examples
48 = sqrt(2304) = pqr + 2uvw - pu^2 - qv^2 - rw^2 for (p,q,r,u,v,w) = (440653,440669,440677,440681,440683,440711), which are consecutive primes. Hence, 440653 is a member of the sequence.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 192 terms from Philip Mizzi)
Crossrefs
Cf. A000040.
Programs
-
Mathematica
f[{p_, q_, r_, u_, v_, w_}] := p q r + 2 u v w - p u^2 - q v^2 - r w^2; First /@ Select[Partition[ Prime@ Range@ 300000, 6, 1], IntegerQ@ Sqrt@ f@ # &] (* Giovanni Resta, Sep 30 2019 *)
-
PARI
chk(nn) = {forprime (p=1, nn, my(q = nextprime(p+1), r = nextprime(q+1), u = nextprime(r+1), v = nextprime(u+1), w = nextprime(v+1)); if (issquare(p*q*r + 2*u*v*w - p*u^2 - q*v^2 - r*w^2), print1(p, ", ")););} \\ Michel Marcus, Sep 30 2019
Comments