A327596 Number of colored compositions of 2n using all colors of an n-set such that all parts have different color patterns and the patterns for parts i are sorted and have i colors in (weakly) increasing order.
1, 1, 27, 1222, 78819, 7990555, 1075539168, 185948116920, 39826324710186, 10231314625984628, 3097070454570888110, 1088018981038197792790, 436918864329884469153204, 198400793333371519398942287, 100941775818744369615731919906, 57064609834208008799145534143376
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
Crossrefs
Cf. A327244.
Programs
-
Maple
C:= binomial: b:= proc(n, i, k, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add( b(n-i*j, min(n-i*j, i-1), k, p+j)/j!*C(C(k+i-1, i), j), j=0..n/i))) end: a:= n-> add(b(2*n$2, i, 0)*(-1)^(n-i)*C(n, i), i=0..n): seq(a(n), n=0..17);
-
Mathematica
c = Binomial; b[n_, i_, k_, p_] := b[n, i, k, p] = If[n == 0, p!, If[i < 1, 0, Sum[ b[n-i*j, Min[n-i*j, i-1], k, p+j]/j!*c[c[k+i-1, i], j], {j, 0, n/i}]]]; a[n_] := Sum[b[2n, 2n, i, 0]*(-1)^(n-i)*c[n, i], {i, 0, n}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Apr 11 2022, after Alois P. Heinz *)
Formula
a(n) = A327244(2n,n).