A327598 Number of colored integer partitions of n using all colors of a 2-set such that all parts have different color patterns and a pattern for part i has i colors in (weakly) increasing order.
0, 0, 2, 6, 15, 32, 65, 124, 230, 414, 729, 1258, 2141, 3586, 5935, 9716, 15738, 25258, 40196, 63452, 99426, 154732, 239219, 367592, 561602, 853300, 1289777, 1939920, 2904003, 4327672, 6421572, 9489260, 13967003, 20479638, 29919253, 43556102, 63193528
Offset: 0
Keywords
Examples
a(2) = 2: 2ab, 1a1b. a(3) = 6: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3000
- Wikipedia, Partition (number theory)
Crossrefs
Column k=2 of A327116.
Programs
-
Maple
C:= binomial: b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add( b(n-i*j, min(n-i*j, i-1), k)*C(C(k+i-1, i), j), j=0..n/i))) end: a:= n-> (k-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k))(2): seq(a(n), n=0..37);
-
Mathematica
c = Binomial; b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] c[c[k + i - 1, i], j], {j, 0, n/i}]]]; a[n_] := With[{k = 2}, Sum[b[n, n, i] (-1)^(k - i) c[k, i], {i, 0, k}]]; a /@ Range[0, 37] (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)