A327605 Number of parts in all twice partitions of n where both partitions are strict.
0, 1, 1, 5, 8, 15, 28, 49, 86, 156, 259, 412, 679, 1086, 1753, 2826, 4400, 6751, 10703, 16250, 24757, 38047, 57459, 85861, 129329, 192660, 286177, 424358, 624510, 915105, 1347787, 1961152, 2847145, 4144089, 5988205, 8638077, 12439833, 17837767, 25536016
Offset: 0
Keywords
Examples
a(3) = 5 = 1+2+2 counting the parts in 3, 21, 2|1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
Programs
-
Maple
g:= proc(n, i) option remember; `if`(i*(i+1)/2
f+ [0, f[1]])(g(n-i, min(n-i, i-1))))) end: b:= proc(n, i) option remember; `if`(i*(i+1)/2 (f-> f+[0, f[1]* h[2]/h[1]])(b(n-i, min(n-i, i-1))*h[1]))(g(i$2)))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..42); -
Mathematica
b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, Return@{1, 0}]; If[k == 0, Return@{1, 1}]; If[i (i + 1)/2 < n, Return@{0, 0}]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]]; a[n_] := b[n, n, 2][[2]]; a /@ Range[0, 42] (* Jean-François Alcover, Jun 03 2020, after Alois P. Heinz in A327622 *)