A309748 The number of non-equivalent distinguishing coloring partitions of the path on n vertices (n>=1) with exactly k parts (k>=1). Regular triangle read by rows: the rows are indexed by n, the number of vertices of the path, and the columns are indexed by k, the number of parts.
1, 0, 1, 0, 1, 1, 0, 4, 4, 1, 0, 6, 14, 6, 1, 0, 16, 49, 37, 9, 1, 0, 28, 154, 182, 76, 12, 1, 0, 64, 496, 876, 542, 142, 16, 1, 0, 120, 1520, 3920, 3522, 1346, 242, 20, 1, 0, 256, 4705, 17175, 21392, 11511, 2980, 390, 25, 1, 0, 496, 14266, 73030, 123665, 89973, 32141, 5990, 595, 30, 1
Offset: 1
Examples
The triangle begins: 1; 0, 1; 0, 1, 1; 0, 4, 4, 1; 0, 6, 14, 6, 1; 0, 16, 49, 37, 9, 1; 0, 28, 154, 182, 76, 12, 1; 0, 64, 496, 876, 542, 142, 16, 1; 0, 120, 1520, 3920, 3522, 1346, 242, 20, 1; 0, 256, 4705, 17175, 21392, 11511, 2980, 390, 25, 1; ... ---- For n=4, we can partition the vertices of P_4 into exactly 3 parts in 4 ways such that all these partitions induce distinguishing colorings for P_4 and that all the 4 partitions are non-equivalent. The partitions are as follows: { { 1 }, { 2 }, { 3, 4 } } { { 1 }, { 2, 3 }, { 4 } } { { 1 }, { 2, 4 }, { 3 } } { { 1, 4 }, { 2 }, { 3 } }
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, Number of Distinguishing Colorings and Partitions, arXiv:1910.12102 [math.CO], 2019.
- Mohammad Hadi Shekarriz, GAP Program
Crossrefs
Programs
-
PARI
\\ Ach is A304972 as square matrix. Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M} T(n)={(matrix(n, n, i, k, stirling(i, k, 2) - 2*stirling((i+1)\2, k, 2)) + Ach(n))/2} { my(A=T(10)); A[1,1]=1; for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 18 2019
Formula
T(n,k) = A284949(n,k) - Stirling2(ceiling(n/2), k) for n > 1. - Andrew Howroyd, Aug 15 2019
Extensions
Terms a(56) and beyond from Andrew Howroyd, Sep 18 2019
Comments