A327644 Number of proper many times partitions of n.
1, 1, 2, 4, 14, 44, 244, 1196, 9366, 62296, 584016, 5120548, 60244028, 627389924, 8378159376, 106097674780, 1652301306958, 23655318730276, 409987534384504, 6742903763089068, 130675390985884516, 2396246933608687036, 50636625943991790784, 1032841246318579471748
Offset: 0
Keywords
Examples
a(3) = 4: 3, 3->21, 3->111, 3->21->111. a(4) = 14: 4, 4->31, 4->22, 4->211, 4->1111, 4->31->211, 4->31->1111, 4->22->112, 4->22->211, 4->22->1111, 4->211->1111, 4->31->211->1111, 4->22->112->1111, 4->22->211->1111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Vaclav Kotesovec, Plot of a(n+1)/(n*a(n)) for n = 1..400
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1, b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k)) end: a:= n-> add(add(b(n$2, i)*(-1)^(k-i)* binomial(k, i), i=0..k), k=0..max(0, n-1)): seq(a(n), n=0..23);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0, 1, If[i > 1, b[n, i - 1, k], 0] + b[i, i, k - 1] b[n - i, Min[n - i, i], k]]; a[n_] := Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {k, 0, Max[0, n - 1]}, {i, 0, k}]; a /@ Range[0, 23] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
Comments