cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327644 Number of proper many times partitions of n.

Original entry on oeis.org

1, 1, 2, 4, 14, 44, 244, 1196, 9366, 62296, 584016, 5120548, 60244028, 627389924, 8378159376, 106097674780, 1652301306958, 23655318730276, 409987534384504, 6742903763089068, 130675390985884516, 2396246933608687036, 50636625943991790784, 1032841246318579471748
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2019

Keywords

Comments

In each step at least one part is replaced by the partition of itself into smaller parts. The parts are not resorted.

Examples

			a(3) = 4: 3, 3->21, 3->111, 3->21->111.
a(4) = 14: 4, 4->31, 4->22, 4->211, 4->1111, 4->31->211, 4->31->1111, 4->22->112, 4->22->211, 4->22->1111, 4->211->1111, 4->31->211->1111, 4->22->112->1111, 4->22->211->1111.
		

Crossrefs

Row sums of A327639.
Cf. A327648.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1,
          b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k))
        end:
    a:= n-> add(add(b(n$2, i)*(-1)^(k-i)*
            binomial(k, i), i=0..k), k=0..max(0, n-1)):
    seq(a(n), n=0..23);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0, 1, If[i > 1, b[n, i - 1, k], 0] + b[i, i, k - 1] b[n - i, Min[n - i, i], k]];
    a[n_] := Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {k, 0, Max[0, n - 1]}, {i, 0, k}];
    a /@ Range[0, 23] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)