cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327647 Number of parts in all proper many times partitions of n into distinct parts.

Original entry on oeis.org

0, 1, 1, 3, 6, 15, 38, 133, 446, 1913, 7492, 36293, 175904, 953729, 5053294, 31353825, 188697696, 1268175779, 8356974190, 61775786301, 448436391810, 3579695446911, 27848806031468, 239229189529685, 2019531300063238, 18477179022470655, 165744369451885256
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2019

Keywords

Comments

In each step at least one part is replaced by the partition of itself into smaller distinct parts. The parts are not resorted and the parts in the result are not necessarily distinct.

Examples

			a(4) = 6 = 1 + 2 + 3, counting the (final) parts in 4, 4->31, 4->31->211.
		

Crossrefs

Row sums of A327632, A327648.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
         `if`(k=0, [1, 1], `if`(i*(i+1)/2 (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
            b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
        end:
    a:= n-> add(add(b(n$2, i)[2]*(-1)^(k-i)*
            binomial(k, i), i=0..k), k=0..max(0, n-2)):
    seq(a(n), n=0..27);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i(i + 1)/2 < n, 0, b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]]* h[[2]]/h[[1]]}][h[[1]] b[n-i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]]]];
    a[n_] := Sum[Sum[b[n, n, i][[2]] (-1)^(k-i) Binomial[k, i], {i, 0, k}], {k, 0, Max[0, n-2]}];
    a /@ Range[0, 27] (* Jean-François Alcover, May 03 2020, after Maple *)