A327675 Number of colored compositions of n using all colors of an initial interval of the color palette such that all parts have different color patterns and the patterns for parts i are sorted and have i colors (in arbitrary order).
1, 1, 4, 40, 355, 4425, 69521, 1162951, 22259414, 478096938, 11614132907, 299700810545, 8456607358157, 255883964141333, 8275199908539114, 287869753459458468, 10564476589147507523, 409845503129745719513, 16777378294629533764699, 720626728499888159724831
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Crossrefs
Row sums of A327673.
Programs
-
Maple
b:= proc(n, i, k, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(binomial(k^i, j)* b(n-i*j, min(n-i*j, i-1), k, p+j)/j!, j=0..n/i))) end: a:= n-> add(add(b(n$2, i, 0)*(-1)^(k-i)* binomial(k, i), i=0..k), k=0..n): seq(a(n), n=0..23);
-
Mathematica
b[n_, i_, k_, p_] := b[n, i, k, p] = If[n == 0, p!, If[i < 1, 0, Sum[ Binomial[k^i, j]* b[n - i*j, Min[n - i*j, i - 1], k, p + j]/j!, {j, 0, n/i}]]]; a[n_] := Sum[Sum[b[n, n, i, 0]*(-1)^(k - i)* Binomial[k, i], {i, 0, k}], {k, 0, n}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 11 2022, after Alois P. Heinz *)