cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327683 Expansion of Product_{k>0} (1+sqrt(1+4*x^k))/2.

Original entry on oeis.org

1, 1, 0, 4, -5, 17, -40, 144, -459, 1517, -5111, 17747, -62074, 219292, -782602, 2816664, -10205754, 37203230, -136360106, 502219652, -1857659296, 6897983144, -25704335380, 96090440940, -360265425619, 1354343161419, -5103948546609, 19278502980063, -72972099256954
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2019

Keywords

Crossrefs

Convolution inverse of A327682.

Programs

  • Maple
    N:= 40:
    P:= mul((1+sqrt(1+4*x^k))/2,k=1..N):
    S:= series(P,x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Sep 22 2019
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+Sqrt[1+4*x^k])/2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 22 2019 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+sqrt(1+4*x^k))/2))
    
  • PARI
    N=66; x='x+O('x^N); Vec(prod(i=1, N, 1-sum(j=1, N\i, (-1)^j*binomial(2*j-2, j-1)*x^(i*j)/j)))

Formula

a(n) ~ -(-1)^n * c * 2^(2*n - 1) / (sqrt(Pi) * n^(3/2)), where c = Product_{k>=1} (1 + sqrt(1 + 4*(-1/4)^k))/2 = 0.52271977595412566689522667777276363119313248923... - Vaclav Kotesovec, May 06 2021