A327690 Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A003114.
1, 1, 2, 3, 6, 8, 14, 19, 31, 43, 64, 88, 131, 176, 250, 337, 471, 626, 859, 1133, 1532, 2008, 2674, 3479, 4595, 5933, 7745, 9952, 12888, 16451, 21142, 26842, 34260, 43283, 54878, 68993, 87017, 108884, 136564, 170191, 212441, 263646, 327616, 405034, 501203, 617423, 760964
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Seiichi Manyama)
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[1/(QPochhammer[x^(5*j - 4)] * QPochhammer[x^(5*j - 1)]), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 23 2019 *)
Formula
G.f.: Product_{i>=1} Product_{j>=1} 1 / ((1-x^(i*(5*j-1))) * (1-x^(i*(5*j-4)))).