cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327700 Primes p such that p + q*(q-p) and q + p*(q-p) are prime, where q is the next prime after p.

Original entry on oeis.org

2, 3, 5, 23, 59, 61, 83, 151, 233, 263, 269, 293, 373, 401, 433, 503, 541, 619, 701, 971, 1103, 1433, 1493, 1601, 1621, 1861, 1949, 2099, 2179, 2371, 2441, 2543, 2741, 2851, 2903, 2999, 3083, 3181, 3313, 3413, 3559, 3631, 4073, 4093, 4549, 4591, 4643, 5039, 5081, 5471, 5711, 5749
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Sep 22 2019

Keywords

Crossrefs

Includes A174920.

Programs

  • Maple
    R:= NULL: count:= 0:
    q:= 2:
    do
      p:= q; q:= nextprime(p);
      if isprime(p+(q-p)*q) and isprime(q+(q-p)*p) then
         count:= count+1;
         R:= R, p;
         if count = 100 then break fi
      fi
    od:
    R;
  • Mathematica
    Do[a=Prime[k]+Prime[k+1]*(Prime[k+1]-Prime[k]);b=Prime[k+1]+Prime[k]*(Prime[k+1]-Prime[k]);If[PrimeQ[a]&&PrimeQ[b],Print[Prime[k]]],{k,1,757}] (* Metin Sariyar, Sep 23 2019 *)
    chpQ[{a_,b_}]:=AllTrue[{a+b(b-a),b+a(b-a)},PrimeQ]; Select[Partition[ Prime[ Range[800]],2,1],chpQ][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 05 2021 *)