A327714 Exceptional class of numbers k such that p(7*k + 5) == 0 (mod 49), where p() = A000041().
73, 98, 99, 112, 141, 154, 171, 197, 225, 245, 266, 276, 283, 288, 290, 301, 309, 316, 322, 323, 330, 357, 385, 386, 406, 414, 444, 455, 463, 465, 483, 484, 491, 498, 512, 525, 539, 554, 575, 596, 602, 626, 654, 665, 679
Offset: 1
Keywords
Examples
p(7*73 + 5) = p(516) = 49 * 113094142490063549717. This example is given by Watson (1938, p. 127). On the same page, he also says that p(105*7 + 5) = p(740) == 0 (mod 49) (even though 105 == 0 (mod 7)), but that is wrong.
Links
- Watson, G. N., Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle) 179 (1938), 97-128; see pp. 124-127.
Comments