cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327741 Terms of A002496 that are the average of two distinct terms of A002496.

Original entry on oeis.org

101, 21317, 24337, 462401, 1073297, 1123601, 1263377, 1887877, 1943237, 2446097, 2604997, 2890001, 3422501, 4202501, 4343057, 5354597, 6330257, 7862417, 8386817, 8410001, 9156677, 10536517, 10719077, 11383877, 12068677, 12110401, 12503297, 16273157, 18062501, 19219457, 21771557, 22429697
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Sep 23 2019

Keywords

Comments

Primes of the form x^2+1 such that 2*x^2=y^2+z^2 where y^2+1 and z^2+1 are primes.
Some terms of the sequence are the average of more than one pair of terms of A002496. E.g., 2890001 = (115601 + 5664401)/2 = (2016401 + 3763601)/2, while 5354597 = (42437 + 10666757)/2 = (1136357 + 9572837)/2 = (1552517 + 9156677)/2.
Primes of the form u^2*(s^2 + t^2)^2 + 1 where u^2*(s^2 + 2*s*t - t^2)^2 + 1 and u^2*(-s^2 + 2*s*t + t^2)^2 + 1 are prime, (sqrt(2) - 1)*s < t < s. The generalized Bunyakovsky conjecture implies there are infinitely many terms for each such pair (s,t).

Examples

			a(3)=24337 is in the sequence because 24337=(7057+41617)/2 with 7057, 24337 and 41617 all terms of A002496, i.e., they are primes and 7057=84^2+1, 24337=156^2+1 and 41617=204^2+1.
		

Crossrefs

Cf. A002496.

Programs

  • Maple
    N:= 10^8: # to get terms <= N
    P:= select(isprime, [seq(x^2+1, x=2..floor(sqrt(N-1)),2)]):
    nP:= nops(P):
    R:= NULL:
    for i from 1 to nP do
      x:= P[i];
      for j from 1 to i-1 do
        z:= 2*x-P[j];
        if issqr(z-1) and isprime(z) then R:= R, x; break fi
      od
    od:
    R;