cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A327745 Expansion of Product_{i>=1, j>=1} (1 + x^(i*j*(j + 1)/2)).

Original entry on oeis.org

1, 1, 1, 3, 3, 4, 8, 9, 11, 19, 23, 28, 42, 51, 62, 89, 108, 130, 178, 215, 260, 344, 413, 496, 639, 766, 916, 1155, 1380, 1641, 2040, 2426, 2870, 3520, 4166, 4912, 5960, 7023, 8246, 9911, 11634, 13610, 16224, 18972, 22111, 26183, 30507, 35430, 41698
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2019

Keywords

Comments

Weigh transform of A007862.

Crossrefs

Programs

  • Mathematica
    nmax = 48; CoefficientList[Series[Product[(1 + x^k)^Length[Select[Divisors[k], IntegerQ[Sqrt[8 # + 1]] &]], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d Length[Select[Divisors[d], IntegerQ[Sqrt[8 # + 1]] &]], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 48}]
    nmax = 50; CoefficientList[Series[Product[QPochhammer[-1, x^(k*(k + 1)/2)]/2, {k, 1, Sqrt[2*nmax]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 24 2019 *)

Formula

G.f.: Product_{k>=1} (1 + x^k)^A007862(k).

A327764 Expansion of 1 / (1 - Sum_{i>=1, j>=1} x^(i*j*(j + 1)/2)).

Original entry on oeis.org

1, 1, 2, 5, 10, 21, 47, 99, 211, 455, 973, 2081, 4464, 9558, 20466, 43848, 93914, 201140, 430844, 922818, 1976553, 4233613, 9067960, 19422576, 41601229, 89105550, 190854784, 408791400, 875589076, 1875421302, 4016959325, 8603912899, 18428694036, 39472363286
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 24 2019

Keywords

Comments

Invert transform of A007862.

Crossrefs

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1)/2)/(1 - x^(k (k + 1)/2)), {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Length[Select[Divisors[k], IntegerQ[Sqrt[8 # + 1]] &]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}]

Formula

G.f.: 1 / (1 - Sum_{k>=1} x^(k*(k + 1)/2) / (1 - x^(k*(k + 1)/2))).
a(0) = 1; a(n) = Sum_{k=1..n} A007862(k) * a(n-k).
Showing 1-2 of 2 results.