A327751 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of (-1 + Product_{j=1..n} (1 + x_j + 1/x_j))^k.
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 8, 0, 1, 0, 6, 24, 26, 0, 1, 0, 0, 216, 264, 80, 0, 1, 0, 20, 1200, 5646, 2160, 242, 0, 1, 0, 0, 8840, 101520, 121200, 16080, 728, 0, 1, 0, 70, 58800, 2103740, 6136800, 2410326, 115464, 2186, 0, 1
Offset: 0
Examples
Square array begins: 1, 0, 0, 0, 0, 0, ... 1, 0, 2, 0, 6, 0, ... 1, 0, 8, 24, 216, 1200, ... 1, 0, 26, 264, 5646, 101520, ... 1, 0, 80, 2160, 121200, 6136800, ... 1, 0, 242, 16080, 2410326, 332810400, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..93, flattened
Crossrefs
Formula
T(n,k) = Sum_{j=0..k} (-1)^(k-j) * binomial(k,j) * A002426(j)^n.
Comments