A327752 Primes powers (A246655) congruent to 1 mod 5.
11, 16, 31, 41, 61, 71, 81, 101, 121, 131, 151, 181, 191, 211, 241, 251, 256, 271, 281, 311, 331, 361, 401, 421, 431, 461, 491, 521, 541, 571, 601, 631, 641, 661, 691, 701, 751, 761, 811, 821, 841, 881, 911, 941, 961, 971, 991, 1021, 1031, 1051, 1061, 1091, 1151, 1171, 1181, 1201
Offset: 1
Keywords
Examples
k = 11: in GF(11), x^4 + x^3 + x^2 + x + 1 = (x - 3)*(x - 4)*(x - 5)*(x + 2); k = 16: let GF(16) = GF(2)[y]/(y^4+y+1), then x^4 + x^3 + x^2 + x + 1 = (x - y^3)*(x - (y^3+y))*(x - (y^3+y^2))*(x - (y^3+y^2+y+1)).
Links
- Marius A. Burtea, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n:n in [2..1210]|IsPrimePower(n) and (n mod 5 eq 1)]; // Marius A. Burtea, Sep 26 2019
-
PARI
isok(n) = isprimepower(n) && (n%5==1)
Comments