A327753 Primes powers (A246655) congruent to 4 mod 5.
4, 9, 19, 29, 49, 59, 64, 79, 89, 109, 139, 149, 169, 179, 199, 229, 239, 269, 289, 349, 359, 379, 389, 409, 419, 439, 449, 479, 499, 509, 529, 569, 599, 619, 659, 709, 719, 729, 739, 769, 809, 829, 839, 859, 919, 929, 1009, 1019, 1024, 1039, 1049, 1069, 1109, 1129, 1229, 1249
Offset: 1
Keywords
Examples
k = 4: let GF(4) = GF(2)[w], w^2 + w + 1 = 0, then x^4 + x^3 + x^2 + x + 1 = (x^2 + w*x + 1)*(x^2 + (w+1)*x + 1); k = 9: let GF(9) = GF(3)[i], i^2 = -1, then x^4 + x^3 + x^2 + x + 1 = (x^2 + (-1+i)*x + 1)*(x^2 + (-1-i)*x + 1); k = 19: in GF(19), x^4 + x^3 + x^2 + x + 1 = (x^2 + 5x + 1)*(x^2 - 4x + 1).
Links
- Marius A. Burtea, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n:n in [2..1250]|IsPrimePower(n) and (n mod 5 eq 4)]; // Marius A. Burtea, Sep 26 2019
-
Mathematica
Select[Range@ 1250, And[PrimePowerQ@ #, Mod[#, 5] == 4] &] (* Michael De Vlieger, Sep 27 2019 *)
-
PARI
isok(n) = isprimepower(n) && (n%5==4)
Comments