cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327773 Decimal expansion of Sum_{k>=1} 1/(k*(k+1))^4.

Original entry on oeis.org

0, 6, 3, 3, 2, 7, 8, 0, 4, 3, 8, 6, 8, 0, 5, 1, 1, 2, 4, 8, 0, 3, 1, 0, 7, 2, 6, 0, 0, 2, 8, 3, 9, 5, 8, 9, 9, 2, 8, 4, 9, 9, 9, 2, 7, 9, 7, 3, 4, 2, 2, 5, 7, 0, 0, 7, 7, 1, 1, 7, 0, 1, 8, 2, 8, 8, 3, 9, 0, 6, 4, 0, 4, 3, 7, 9, 5, 5, 1, 6, 9, 7, 8, 6, 3, 9, 7, 2, 8, 4, 2, 7, 8, 5, 7, 3, 9, 4, 0, 5, 4, 6, 0, 6, 8, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 25 2019

Keywords

Comments

Sum_{k>=1} 1/(k*(k+1)) = 1
Sum_{k>=1} 1/(k*(k+1))^2 = -3 + Pi^2/3
Sum_{k>=1} 1/(k*(k+1))^3 = 10 - Pi^2
Sum_{k>=1} 1/(k*(k+1))^4 = -35 + 10*Pi^2/3 + Pi^4/45
Sum_{k>=1} 1/(k*(k+1))^5 = 126 - 35*Pi^2/3 - Pi^4/9
Sum_{k>=1} 1/(k*(k+1))^6 = -462 + 42*Pi^2 + 7*Pi^4/15 + 2*Pi^6/945
Sum_{k>=1} 1/(k*(k+1))^7 = 1716 - 154*Pi^2 - 28*Pi^4/15 - 2*Pi^6/135
Sum_{k>=1} 1/(k*(k+1))^8 = -6435 + 572*Pi^2 + 22*Pi^4/3 + 8*Pi^6/105 + Pi^8/4725
Sum_{k>=1} 1/(k*(k+1))^9 = 24310 - 2145*Pi^2 - 143*Pi^4/5 - 22*Pi^6/63 - Pi^8/525
Sum_{k>=1} 1/(k*(k+1))^10 = -92378 + 24310*Pi^2/3 + 1001*Pi^4/9 + 286*Pi^6/189 + 11*Pi^8/945 + 2*Pi^10/93555
In general, for s > 1, Sum_{k>=1} 1/(k*(k+1))^s = (-1)^s * (-binomial(2*s-1, s-1) + Sum_{j=1..floor(s/2)} (-1)^(j+1) * binomial(2*s-2*j-1, s-1) * Bernoulli(2*j) * (2*Pi)^(2*j) / (2*j)!).
Equivalently, for s > 1, Sum_{k>=1} 1/(k*(k+1))^s = (-1)^s * (-binomial(2*s-1, s-1) + 2*Sum_{j=1..floor(s/2)} binomial(2*s-2*j-1, s-1) * zeta(2*j)).

Examples

			0.06332780438680511248031072600283958992849992797342257007711701828839...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(k*(k+1))^4, k=1..infinity), 120);
  • Mathematica
    RealDigits[N[Sum[1/(k*(k + 1))^4, {k, 1, Infinity}], 105]][[1]]
  • PARI
    suminf(k=1, 1/(k*(k+1))^4)

Formula

Equals Pi^4/45 + 10*Pi^2/3 - 35.