A327773 Decimal expansion of Sum_{k>=1} 1/(k*(k+1))^4.
0, 6, 3, 3, 2, 7, 8, 0, 4, 3, 8, 6, 8, 0, 5, 1, 1, 2, 4, 8, 0, 3, 1, 0, 7, 2, 6, 0, 0, 2, 8, 3, 9, 5, 8, 9, 9, 2, 8, 4, 9, 9, 9, 2, 7, 9, 7, 3, 4, 2, 2, 5, 7, 0, 0, 7, 7, 1, 1, 7, 0, 1, 8, 2, 8, 8, 3, 9, 0, 6, 4, 0, 4, 3, 7, 9, 5, 5, 1, 6, 9, 7, 8, 6, 3, 9, 7, 2, 8, 4, 2, 7, 8, 5, 7, 3, 9, 4, 0, 5, 4, 6, 0, 6, 8, 0
Offset: 0
Examples
0.06332780438680511248031072600283958992849992797342257007711701828839...
Links
- R. J. Mathar, Tighly circumscribed regular polygons, arXiv:1301.6293 [math.MG], 2013, see Appendix.
- Eric Weisstein's World of Mathematics, Bernoulli Number
- Eric Weisstein's World of Mathematics, Riemann zeta function
Programs
-
Maple
evalf(sum(1/(k*(k+1))^4, k=1..infinity), 120);
-
Mathematica
RealDigits[N[Sum[1/(k*(k + 1))^4, {k, 1, Infinity}], 105]][[1]]
-
PARI
suminf(k=1, 1/(k*(k+1))^4)
Formula
Equals Pi^4/45 + 10*Pi^2/3 - 35.
Comments