A327776 Heinz numbers of integer partitions whose LCM is less than their sum.
4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 32, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 52, 54, 56, 57, 58, 60, 62, 63, 64, 65, 68, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 87, 88, 90, 92, 94, 96, 98, 100, 104, 106, 108, 111, 112
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 4: {1,1} 6: {1,2} 8: {1,1,1} 9: {2,2} 10: {1,3} 12: {1,1,2} 14: {1,4} 16: {1,1,1,1} 18: {1,2,2} 20: {1,1,3} 21: {2,4} 22: {1,5} 24: {1,1,1,2} 25: {3,3} 26: {1,6} 27: {2,2,2} 28: {1,1,4} 32: {1,1,1,1,1} 34: {1,7} 36: {1,1,2,2}
Crossrefs
Programs
-
Maple
q:= n-> (l-> is(ilcm(l[])
numtheory[pi](i[1])$i[2], ifactors(n)[2])): select(q, [$1..120])[]; # Alois P. Heinz, Sep 27 2019 -
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[2,100],LCM@@primeMS[#]
Comments