cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327783 Heinz numbers of integer partitions whose LCM is a multiple of their sum.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 154, 157, 163, 165, 167, 173, 179, 181, 190, 191, 193, 197, 198, 199, 211, 223, 227, 229, 233, 239, 241
Offset: 1

Views

Author

Gus Wiseman, Sep 25 2019

Keywords

Comments

First differs from A319333 in having 154.
First nonsquarefree term is 198.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    3: {2}
    5: {3}
    7: {4}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   23: {9}
   29: {10}
   30: {1,2,3}
   31: {11}
   37: {12}
   41: {13}
   43: {14}
   47: {15}
   53: {16}
   59: {17}
   61: {18}
   67: {19}
		

Crossrefs

The enumeration of these partitions by sum is A327778.
Heinz numbers of partitions whose LCM is twice their sum are A327775.
Heinz numbers of partitions whose LCM is less than their sum are A327776.
Heinz numbers of partitions whose LCM is greater than their sum are A327784.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],Divisible[LCM@@primeMS[#],Total[primeMS[#]]]&]

Formula

A056239(a(k)) | A290103(a(k)).