A327784 Heinz numbers of integer partitions whose LCM is greater than their sum.
1, 15, 33, 35, 51, 55, 66, 69, 70, 77, 85, 91, 93, 95, 99, 102, 105, 110, 119, 123, 132, 138, 140, 141, 143, 145, 153, 154, 155, 161, 165, 170, 175, 177, 182, 186, 187, 190, 201, 203, 204, 205, 207, 209, 210, 215, 217, 219, 220, 221, 231, 238, 245, 246, 247, 249
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 15: {2,3} 33: {2,5} 35: {3,4} 51: {2,7} 55: {3,5} 66: {1,2,5} 69: {2,9} 70: {1,3,4} 77: {4,5} 85: {3,7} 91: {4,6} 93: {2,11} 95: {3,8} 99: {2,2,5} 102: {1,2,7} 105: {2,3,4} 110: {1,3,5} 119: {4,7} 123: {2,13} 132: {1,1,2,5}
Crossrefs
Programs
-
Maple
q:= n-> (l-> is(ilcm(l[])>add(j, j=l)))(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2])): select(q, [$1..250])[]; # Alois P. Heinz, Sep 27 2019
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[2,100],LCM@@primeMS[#]>Total[primeMS[#]]&]
Comments