A327795 Number of parts in all proper twice partitions of n into distinct parts.
0, 0, 0, 3, 6, 13, 30, 61, 121, 210, 353, 600, 989, 1628, 2667, 4205, 6514, 10406, 15893, 24322, 37516, 56824, 85102, 128420, 191579, 284898, 422839, 622721, 913006, 1345320, 1958269, 2843788, 4140170, 5983662, 8632808, 12433730, 17830728, 25527909, 36516161
Offset: 1
Keywords
Examples
a(4) = 3: 4 -> 31 -> 211 (3 parts)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..5000
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(k=0, [1, 1], `if`(i*(i+1)/2
(f-> f +[0, f[1]*h[2]/h[1]])(h[1]* b(n-i, min(n-i, i-1), k)))(b(i$2, k-1))))) end: a:= n-> (k-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k))(2): seq(a(n), n=1..41); -
Mathematica
b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i (i + 1)/2 < n, {0, 0}, b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][ b[i, i, k - 1]]]]]]; T[n_, k_] := Sum[b[n, n, i][[2]] (-1)^(k - i) Binomial[k, i], {i, 0, k}]; a[n_] := T[n, 2]; Array[a, 41] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)