cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327795 Number of parts in all proper twice partitions of n into distinct parts.

Original entry on oeis.org

0, 0, 0, 3, 6, 13, 30, 61, 121, 210, 353, 600, 989, 1628, 2667, 4205, 6514, 10406, 15893, 24322, 37516, 56824, 85102, 128420, 191579, 284898, 422839, 622721, 913006, 1345320, 1958269, 2843788, 4140170, 5983662, 8632808, 12433730, 17830728, 25527909, 36516161
Offset: 1

Views

Author

Alois P. Heinz, Sep 25 2019

Keywords

Examples

			a(4) = 3:
  4 -> 31 -> 211   (3 parts)
		

Crossrefs

Column k=2 of A327632.
Cf. A327605.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
         `if`(k=0, [1, 1], `if`(i*(i+1)/2 (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
            b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
        end:
    a:= n-> (k-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k))(2):
    seq(a(n), n=1..41);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i (i + 1)/2 < n, {0, 0}, b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][ b[i, i, k - 1]]]]]];
    T[n_, k_] := Sum[b[n, n, i][[2]] (-1)^(k - i) Binomial[k, i], {i, 0, k}];
    a[n_] := T[n, 2];
    Array[a, 41] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)