A327804 Leading coefficient of the n-th Stern polynomial.
0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 2, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 3, 5, 2, 2, 2, 2, 2, 5, 3, 4, 1, 1, 1, 1, 2
Offset: 0
Keywords
Links
- A. Schinzel, The leading coefficients of Stern polynomials, in: From Arithmetic to Zeta-Functions: Number Theory in Memory of Wolfgang Schwarz (J. Sander et al., eds.), Springer, 2016, 427-434.
Programs
-
Mathematica
B[0, ] = 0; B[1, ] = 1; B[n_, t_] := B[n, t] = If[EvenQ[n], t B[n/2, t], B[1 + (n-1)/2, t] + B[(n-1)/2, t]]; a[n_] := Coefficient[B[n, t], t, Exponent[B[n, t], t]]; a[0] = 0; a /@ Range[0, 90] (* Jean-François Alcover, Sep 26 2019, from A125184 *)
-
PARI
pol(n) = {if (n<2, return (n)); if (n%2, pol((n+1)/2) + pol((n-1)/2), x*pol(n/2));} a(n) = my(p=pol(n)); if (p==0, 0, polcoef(p, poldegree(p)));