A327832 The practical component of n: the largest divisor of n which is a practical number (A005153).
1, 2, 1, 4, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 16, 1, 18, 1, 20, 1, 2, 1, 24, 1, 2, 1, 28, 1, 30, 1, 32, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 54, 1, 56, 1, 2, 1, 60, 1, 2, 1, 64, 1, 66, 1, 4, 1, 2, 1, 72, 1, 2, 1, 4, 1, 78, 1, 80, 1
Offset: 1
Keywords
Examples
a(22) = 2 since the divisors of 22 are {1, 2, 11, 22}, of them {1, 2} are practical, and 2 being the largest.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Paul Pollack and Lola Thompson, Practical pretenders, Publicationes Mathematicae Debrecen, Vol. 82, No. 3-4 (2013), pp. 651-717, arXiv preprint, arXiv:1201.3168 [math.NT], 2012.
- Andreas Weingartner, Integers with large practical component, Publicationes Mathematicae Debrecen, Vol. 87, No. 3-4 (2015), pp. 439-447, arXiv preprint, arXiv:1411.6974v2 [math.NT], 2014-2015.
Programs
-
Mathematica
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); a[n_] := If[(ind = Position[(fct = FactorInteger[n])[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}, n, Times @@ (Power @@@ fct[[1 ;; ind[[1, 1]] - 1]])]; Array[a, 100]
-
PARI
\\ using is_A005153 a(n) = fordiv(n, d, if(is_A005153(n/d), return(n/d))); \\ Michel Marcus, Jul 03 2021
Formula
If n = Product_{i=1..r} p_i^e_i, then define n_0 = 1, n_j = Product_{i=1..j} p_i^e_i. a(n) = n_j where j is the first index for which p_{j+1} > sigma(n_j) + 1, or j = r if no such index exists.
A number n is practical if and only if a(n) = n.
a(n) = 1 if and only if n is odd.
Comments