A327889 Triangle read by rows T(n, k) = (-1)^k * A000217(k) * F(binomial(n,k)), where F(x) = 1 if the largest decimal digit of x is 1, and 0 otherwise.
0, 0, -1, 0, 0, 3, 0, 0, 0, -6, 0, 0, 0, 0, 10, 0, 0, 3, -6, 0, -15, 0, 0, 3, 0, 10, 0, 21, 0, 0, 0, 0, 0, 0, 0, -28, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 10, -15, 0, 0, 0, -45, 0, -1, 0, -6, 0, 0, 0, -28, 0, -45, 55, 0, -1, 0, -6, 0, 0, 0, 0, 36, 0, 55, -66, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -66, 78
Offset: 1
Examples
First 16 rows of the T(n, k): 0; 0, -1; 0, 0, 3; 0, 0, 0, -6; 0, 0, 0, 0, 10; 0, 0, 3, -6, 0, -15; 0, 0, 3, 0, 10, 0, 21; 0, 0, 0, 0, 0, 0, 0, -28; 0, 0, 0, 0, 0, 0, 0, 0, 36; 0, 0, 0, 0, 10, -15, 0, 0, 0,-45; 0, -1, 0, -6, 0, 0, 0, -28, 0,-45, 55; 0, -1, 0, -6, 0, 0, 0, 0, 36, 0, 55, -66; 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -66, 78; 0, -1, 0, 0, 0, -15, 21, -28, 36, 0, 0, 0, 78, -91; 0, -1, 0, 0, 10, 0, 0, 0, 0, 0, 55, 0, 0, -91, 105; 0, -1, 3, 0, 10, 0, 0, 0, 0, 0, 0, -66, 0, -91, 105, -120;
Links
- Matej Veselovac, Table of n, a(n) for n = 1..100000
- Math StackExchange, Pattern in Pascal's triangle .
- Matej Veselovac, Scatterplot of the sequence, for terms a(n), n=1...10^5..
Crossrefs
Programs
-
Mathematica
d[n_, b_: 10] := Mod[Floor[n/b^(Floor[Log[b, n]])], b]; t[n_] := n (n + 1)/2; f[x_] := x ; r[n0_, b_: 10] := Flatten[Table[(-1)^k Floor[f[t[k]]]*If[d[Binomial[n, k], b] == 1, 1, 0], {n, 0, n0}, {k, 0, n}]]; r[20] (* Matej Veselovac, Sep 29 2019 *)
Formula
The entries of the triangle are given by T(n, k) = (-1)^k * A000217(k) * F(binomial(n,k)), then it is read by rows, where F(x) = 1 if the largest decimal digit of x is 1, and 0 otherwise.
Comments